最近一個項目,用到了非常古老、且非常高效的對半檢索算法,這次第二次使用這個算法模型進行工程,上一次是6年前
關於
對半檢索算法,是複雜的集合對象環境中,快速找出一個對象的快速搜索算法,適用於分治原則,對數據進行排序。
在查找時,集合中的對象將會被分配一個鍵,鍵總數是2的次方,檢索時,欲查找的對象將會和集合中的中間點比對,如果大於鍵值,那麼該對象則會被保留,剩下的會被拋棄,直到集合中只剩下一個對象。

工作模式
假設我們要適用對半檢索算法找出對象31

首先,我們需要用這個方程式來找出中間值
mid = low + (high - low) / 2
0 + (9 – 0 ) / 2 = 4 (integer value of 4.5). 所以,中間值是4
.

我們找出的比較存儲位4
的值是27
,不匹配。因為我們要查找的值大於27
,所以,我們知道目標一定處於數列的上部。

進行修改,將low
修改為 mid + 1
,再進行中間值查找
low = mid + 1
mid = low + (high - low) / 2
現在,新結果找出的中間值是7
,

顯然7
不是我們的目標,但進一步縮小的目標範圍,目標應該在下部
所以,再次計算中間值,這次是5

命中!結論是目標值存儲在集合中5
這個位置。

範例
Procedure binary_search
A ← sorted array
n ← size of array
x ← value ot be searched
Set lowerBound = 1
Set upperBound = n
while x not found
if upperBound < lowerBound
EXIT: x does not exists.
set midPoint = lowerBound + ( upperBound - lowerBound ) / 2
if A[midPoint] < x
set lowerBound = midPoint + 1
if A[midPoint] > x
set upperBound = midPoint - 1
if A[midPoint] = x
EXIT: x found at location midPoint
end while
end procedure
C下的實現
#include <stdio.h>
#define MAX 20
// array of items on which linear search will be conducted.
int intArray[MAX] = {1,2,3,4,6,7,9,11,12,14,15,16,17,19,33,34,43,45,55,66};
void printline(int count){
int i;
for(i = 0;i <count-1;i++){
printf("=");
}
printf("=\n");
}
int find(int data){
int lowerBound = 0;
int upperBound = MAX -1;
int midPoint = -1;
int comparisons = 0;
int index = -1;
while(lowerBound <= upperBound){
printf("Comparison %d\n" , (comparisons +1) ) ;
printf("lowerBound : %d, intArray[%d] = %d\n",
lowerBound,lowerBound,intArray[lowerBound]);
printf("upperBound : %d, intArray[%d] = %d\n", upperBound,upperBound,intArray[upperBound]);
comparisons++;
// compute the mid point
// midPoint = (lowerBound + upperBound) / 2;
midPoint = lowerBound + (upperBound - lowerBound) / 2;
// data found
if(intArray[midPoint] == data){
index = midPoint;
break;
}else {
// if data is larger
if(intArray[midPoint] < data){
// data is in upper half
lowerBound = midPoint + 1;
}
// data is smaller
else{
// data is in lower half
upperBound = midPoint -1;
}
}
}
printf("Total comparisons made: %d" , comparisons);
return index;
}
void display(){
int i;
printf("[");
// navigate through all items
for(i = 0;i<MAX;i++){
printf("%d ",intArray[i]);
}
printf("]\n");
}
main(){
printf("Input Array: ");
display();
printline(50);
//find location of 1
int location = find(55);
// if element was found
if(location != -1)
printf("\nElement found at location: %d" ,(location+1));
else
printf("\nElement not found.");
}
輸出結果
Input Array: [1 2 3 4 6 7 9 11 12 14 15 16 17 19 33 34 43 45 55 66 ]
==================================================
Comparison 1
lowerBound : 0, intArray[0] = 1
upperBound : 19, intArray[19] = 66
Comparison 2
lowerBound : 10, intArray[10] = 15
upperBound : 19, intArray[19] = 66
Comparison 3
lowerBound : 15, intArray[15] = 34
upperBound : 19, intArray[19] = 66
Comparison 4
lowerBound : 18, intArray[18] = 55
upperBound : 19, intArray[19] = 66
Total comparisons made: 4
Element found at location: 19
本文簡譯自Tutorialspoint的一篇文章